The Goldbach Conjecture With Summands In Arithmetic Progressions

نویسندگان

چکیده

Abstract We prove that, for almost all $r \leq N^{1/2}/\log^{O(1)}N$, any given $b_1 \ (\mathrm{mod}\ r)$ with $(b_1, r) = 1$, and $b_2 $(b_2, we have that natural numbers $2n N$ \equiv b_1 + b_2 can be written as the sum of two prime p_1 p_2$, where $p_1 $p_2 r)$. This improves previous result which required N^{1/3}/\log^{O(1)}N$ instead N^{1/2}/\log^{O(1)}N$. also improve some other results concerning variations problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Goldbach Conjecture in Arithmetic Progressions

It is proved that for a given integer N and for all but (log N)B prime numbers k ≤ N5/48−ε the following is true: For any positive integers bi, i ∈ {1, 2, 3}, (bi, k) = 1 that satisfy N ≡ b1 + b2 + b3 (mod k), N can be written as N = p1+p2+p3, where the pi, i ∈ {1, 2, 3} are prime numbers that satisfy pi ≡ bi (mod k).

متن کامل

On the ternary Goldbach problem with primes in arithmetic progressions of a common module

For A, ε > 0 and any sufficiently large odd n we show that for almost all k ≤ R := n 1/5−ε there exists a representation n = p 1 + p 2 + p 3 with primes p i ≡ b i mod k for almost all admissible triplets b 1 , b 2 , b 3 of reduced residues mod k.

متن کامل

On the Ternary Goldbach Problem with Primes in independent Arithmetic Progressions

We show that for every fixed A > 0 and θ > 0 there is a θ = θ(A, θ) > 0 with the following property. Let n be odd and sufficiently large, and let Q1 = Q2 := n 1/2(log n)−θ and Q3 := (log n) θ. Then for all q3 ≤ Q3, all reduced residues a3 mod q3, almost all q2 ≤ Q2, all admissible residues a2 mod q2, almost all q1 ≤ Q1 and all admissible residues a1 mod q1, there exists a representation n = p1+...

متن کامل

The abc conjecture and non-Wieferich primes in arithmetic progressions

Article history: Received 18 June 2012 Revised 12 September 2012 Accepted 6 October 2012 Available online xxxx Communicated by Greg Martin MSC: 11A41 11B25

متن کامل

THE SUFFICIENCY OF ARITHMETIC PROGRESSIONS FOR THE 3x+ 1 CONJECTURE

Define T : Z+ → Z+ by T (x) = (3x+ 1) /2 if x is odd and T (x) = x/2 if x is even. The 3x+1 Conjecture states that the T -orbit of every positive integer contains 1. A set of positive integers is said to be sufficient if the T -orbit of every positive integer intersects the T -orbit of an element of that set. Thus to prove the 3x+1 Conjecture it suffices to prove it on some sufficient set. Anda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quarterly Journal of Mathematics

سال: 2022

ISSN: ['0033-5606', '1464-3847']

DOI: https://doi.org/10.1093/qmath/haac008